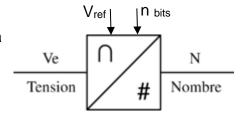


Le Convertisseur Analogique/Numérique


1. Fonction

Un Convertisseur Analogique/Numérique (CAN ou ADC) permet d'obtenir un nombre « image » d'une grandeur analogique. Pratiquement, c'est un circuit électronique qui permet d'obtenir un nombre image d'une tension. C'est une numérisation.

2. Principe

En réalité, le CAN donne un nombre N proportionnel à la tension d'entrée $Ve: N = k \times Ve$

2.1. Fonction de transfert

Ce coefficient de proportionnalité vaut : $k = \frac{(2^n - 1)}{Vref}$

- *Vref* est la tension de référence à laquelle est comparée *Ve*.
- Ve ne peut excéder Vref.
- n est le nombre de bits du nombre N exprimé en binaire.

D'où la fonction de transfert du CAN :

$$N = \frac{(2^n - 1)}{Vref} \times Ve$$

2.2. Résolution

On appelle résolution le nombre de bits du nombre N (en binaire) noté ici n.

2.3. Quantum

La plus petite variation de V_{e} que pourra mesurer le CAN est appelée le **quantum** et vaut :

$$q_{(en V)} = \frac{Vref}{(2^n - 1)}$$

3. Echantillonnage

Pour pouvoir effectuer la conversion il est nécessaire de mesurer le signal d'entrée à un instant précis. C'est l'échantillonnage (sampling).

3.1. Fréquence d'échantillonnage

Une caractéristique importante d'une chaine d'acquisition analogique/numérique est la fréquence à laquelle sont prélevés les échantillons.

C'est la fréquence d'échantillonnage. On l'exprime en *échantillons par seconde*, en *Hz* ou en *SPS* (*Samples Per Second*).

Le SPS a ses multiples le Ksps, le Msps, le Gsps.

3.2. Temps de conversion

Le temps de conversion est le temps entre l'ordre d'échantillonnage et la disponibilité du résultat numérique. La fréquence d'échantillonnage directement liée à ce paramètre.

4. Considérations technologiques

4.1. Références de tension

Les convertisseurs peuvent permettre d'utiliser plusieurs références de tension et génèrent souvent eux-mêmes ces références. On les appelle alors des *références internes*.

4.2. Alimentation

Il est courant que les convertisseurs utilisent des alimentations séparées pour la partie analogique et pour la partie numérique du convertisseur.

4.3. Interface numérique

Il existe plusieurs solutions pour relier un convertisseur à un système numérique. On les différencie selon le standard de communication mis en œuvre : parallèle, SPI, I²C...

Cela influe sur la complexité de l'interface à réaliser et surtout sur la fréquence d'échantillonnage.

4.4. Principe de conversion

Plusieurs principes de conversion sont mis en œuvre par les convertisseurs (du plus lent vers le plus rapide) :

- Convertisseur à simple ou double rampe
- Convertisseur Sigma Delta
- Convertisseur à approximations successives
- Convertisseur flash...

4.5. Unipolaire, bipolaire

Les convertisseurs mesurent généralement des tensions positives (*unipolaires*). Certains permettent des mesurer des tensions positives ou négatives (*bipolaires*).

4.6. Entrées différentielles

Les convertisseurs mesurent généralement les tensions par rapport à 0V. C'est *le mode commun*.

Certains convertisseurs mesurent une différence de potentiel entre deux entrées indépendantes du 0V. C'est le *mode différentiel*. Il y a alors deux broches par entrée de mesure.